
13
Modules and vector spaces

In this chapter, we introduce the basic definitions and results concerning modules
over a ring R and vector spaces over a field F . The reader may have seen some
of these notions before, but perhaps only in the context of vector spaces over a
specific field, such as the real or complex numbers, and not in the context of, say,
finite fields like Zp.

13.1 Definitions, basic properties, and examples
Throughout this section, R denotes a ring (i.e., a commutative ring with unity).

Definition 13.1. An R-module is a set M together with an addition operation on
M and a function µ : R ×M → M , such that the set M under addition forms an
abelian group, and moreover, for all c, d ∈ R and α, β ∈M , we have:

(i) µ(c,µ(d, α)) = µ(cd, α);

(ii) µ(c + d, α) = µ(c, α) + µ(d, α);

(iii) µ(c, α + β) = µ(c, α) + µ(c, β);

(iv) µ(1R, α) = α.

One may also call an R-module M a module over R, and elements of R are
sometimes called scalars. The function µ in the definition is called a scalar mul-
tiplication map, and the value µ(c, α) is called the scalar product of c and α.
Usually, we shall simply write cα (or c · α) instead of µ(c, α). When we do this,
properties (i)–(iv) of the definition may be written as follows:

c(dα) = (cd)α, (c + d)α = cα + dα, c(α + β) = cα + cβ, 1Rα = α.

Note that there are two addition operations at play here: addition in R (such as
c + d) and addition in M (such as α + β). Likewise, there are two multiplication
operations at play: multiplication in R (such as cd) and scalar multiplication (such
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as cα). Note that by property (i), we may write cdα without any ambiguity, as both
possible interpretations, c(dα) and (cd)α, yield the same value.

For fixed c ∈ R, the map that sends α ∈ M to cα ∈ M is a group homomor-
phism with respect to the additive group operation of M (by property (iii) of the
definition); likewise, for fixed α ∈ M , the map that sends c ∈ R to cα ∈ M is
a group homomorphism from the additive group of R into the additive group of
M (by property (ii)). Combining these observations with basic facts about group
homomorphisms (see Theorem 6.19), we may easily derive the following basic
facts about R-modules:

Theorem 13.2. If M is a module over R, then for all c ∈ R, α ∈ M , and k ∈ Z,
we have:

(i) 0R · α = 0M ;

(ii) c · 0M = 0M ;

(iii) (−c)α = −(cα) = c(−α);

(iv) (kc)α = k(cα) = c(kα).

Proof. Exercise. 2

An R-module M may be trivial, consisting of just the zero element 0M . If R is
the trivial ring, then any R-module M is trivial, since for every α ∈ M , we have
α = 1Rα = 0Rα = 0M .

Example 13.1. The ring R itself can be viewed as an R-module in the obvious
way, with addition and scalar multiplication defined in terms of the addition and
multiplication operations of R. 2

Example 13.2. The set R×n, which consists of all of n-tuples of elements of R,
forms an R-module, with addition and scalar multiplication defined component-
wise: for α = (a1, . . . , an) ∈ R×n, β = (b1, . . . , bn) ∈ R×n, and c ∈ R, we define

α + β := (a1 + b1, . . . , an + bn) and cα := (ca1, . . . , can). 2

Example 13.3. The ring of polynomials R[X ] over R forms an R-module in the
natural way, with addition and scalar multiplication defined in terms of the addition
and multiplication operations of the polynomial ring. 2

Example 13.4. As in Example 7.39, let f be a non-zero polynomial over R with
lc(f ) ∈ R∗, and consider the quotient ring E := R[X ]/(f ). Then E is a module
over R, with addition defined in terms of the addition operation of E, and scalar
multiplication defined by c[g]f := [c]f · [g]f = [cg]f , for c ∈ R and g ∈ R[X ]. 2

Example 13.5. Generalizing Example 13.3, if E is any ring containing R as a
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subring (i.e., E is an extension ring of R), then E is a module over R, with addi-
tion and scalar multiplication defined in terms of the addition and multiplication
operations of E. 2

Example 13.6. Any abelian group G, written additively, can be viewed as a Z-
module, with scalar multiplication defined in terms of the usual integer multiplica-
tion map (see Theorem 6.4). 2

Example 13.7. Let G be any group, written additively, whose exponent divides n.
Then we may define a scalar multiplication that maps [k]n ∈ Zn and α ∈ G to kα.
That this map is unambiguously defined follows from the fact that G has exponent
dividing n, so that if k ≡ k′ (mod n), we have kα − k′α = (k − k′)α = 0G, since
n | (k − k′). It is easy to check that this scalar multiplication map indeed makes G
into a Zn-module. 2

Example 13.8. Of course, viewing a group as a module does not depend on
whether or not we happen to use additive notation for the group operation. If
we specialize the previous example to the group G = Z∗p, where p is prime, then
we may view G as a Zp−1-module. However, since the group operation itself is
written multiplicatively, the “scalar product” of [k]p−1 ∈ Zp−1 and α ∈ Z∗p is the
power αk. 2

Example 13.9. If M1, . . . ,Mk are R-modules, then so is their direct product
M1 × · · · ×Mk, where addition and scalar product are defined component-wise. If
M =M1 = · · · =Mk, we write this as M×k. 2

Example 13.10. If I is an arbitrary set, and M is an R-module, then Map(I ,M),
which is the set of all functions f : I → M , may be naturally viewed as an R-
module, with point-wise addition and scalar multiplication: for f , g ∈ Map(I ,M)
and c ∈ R, we define

(f + g)(i) := f (i) + g(i) and (cf )(i) := cf (i) for all i ∈ I . 2

13.2 Submodules and quotient modules
Again, throughout this section, R denotes a ring. The notions of subgroups and
quotient groups extend in the obvious way to R-modules.

Definition 13.3. Let M be an R-module. A subset N of M is a submodule (over
R) of M if

(i) N is a subgroup of the additive group M , and

(ii) cα ∈ N for all c ∈ R and α ∈ N (i.e., N is closed under scalar multiplica-
tion).
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It is easy to see that a submodule N of an R-module M is also an R-module in
its own right, with addition and scalar multiplication operations inherited from M .

Expanding the above definition, we see that a non-empty subset N of M is a
submodule if and only if for all c ∈ R and all α, β ∈ N , we have

α + β ∈ N , −α ∈ N , and cα ∈ N .

Observe that the condition −α ∈ N is redundant, as it is implied by the condition
cα ∈ N with c = −1R.

Clearly, {0M} and M are submodules of M . For k ∈ Z, it is easy to see that
not only are kM and M{k} subgroups of M (see Theorems 6.7 and 6.8), they are
also submodules of M . Moreover, for c ∈ R,

cM := {cα : α ∈M} and M{c} := {α ∈M : cα = 0M}

are also submodules of M . Further, for α ∈M ,

Rα := {cα : c ∈ R}

is a submodule of M . Finally, if N1 and N2 are submodules of M , then N1 +N2

and N1 ∩ N2 are not only subgroups of M , they are also submodules of M . We
leave it to the reader to verify all these facts: they are quite straightforward.

Let α1, . . . , αk ∈M . The submodule

Rα1 + · · · + Rαk

is called the submodule (over R) generated by α1, . . . , αk. It consists of all R-
linear combinations

c1α1 + · · · + ckαk,

where the ci’s are elements of R, and is the smallest submodule of M that contains
the elements α1, . . . , αk. We shall also write this submodule as 〈α1, . . . , αk〉R. As
a matter of definition, we allow k = 0, in which case this submodule is {0M}.
We say that M is finitely generated (over R) if M = 〈α1, . . . , αk〉R for some
α1, . . . , αk ∈M .

Example 13.11. For a given integer ` ≥ 0, define R[X ]<` to be the set of polyno-
mials of degree less than `. The reader may verify that R[X ]<` is a submodule of
the R-module R[X ], and indeed, is the submodule generated by 1,X , . . . ,X `−1. If
` = 0, then this submodule is the trivial submodule {0R}. 2

Example 13.12. Let G be an abelian group. As in Example 13.6, we can view
G as a Z-module in a natural way. Subgroups of G are just the same thing as
submodules of G, and for a1, . . . , ak ∈ G, the subgroup 〈a1, . . . , ak〉 is the same as
the submodule 〈a1, . . . , ak〉Z. 2
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Example 13.13. As in Example 13.1, we may view the ring R itself as an R-
module. With respect to this module structure, ideals of R are just the same thing
as submodules of R, and for a1, . . . , ak ∈ R, the ideal (a1, . . . , ak) is the same as
the submodule 〈a1, . . . , ak〉R. Note that for a ∈ R, the ideal generated by a may
be written either as aR, using the notation introduced in §7.3, or as Ra, using the
notation introduced in this section. 2

Example 13.14. If E is an extension ring of R, then we may view E as an R-
module, as in Example 13.5. It is easy to see that every ideal of E is a submodule;
however, the converse is not true in general. Indeed, the submodule R[X ]<` of
R[X ] discussed in Example 13.11 is not an ideal of the ring R[X ]. 2

If N is a submodule of M , then in particular, it is also a subgroup of M , and
we can form the quotient group M/N in the usual way (see §6.3), which consists
of all cosets [α]N , where α ∈ M . Moreover, because N is closed under scalar
multiplication, we can also define a scalar multiplication on M/N in a natural
way. Namely, for c ∈ R and α ∈M , we define

c · [α]N := [cα]N .

As usual, one must check that this definition is unambiguous, which means that
cα ≡ cα′ (mod N) whenever α ≡ α′ (mod N). But this follows (as the reader
may verify) from the fact that N is closed under scalar multiplication. One can
also easily check that with scalar multiplication defined in this way, M/N is an
R-module; it is called the quotient module (over R) of M modulo N .

Example 13.15. Suppose E is an extension ring of R, and I is an ideal of E.
Viewing E as an R-module, I is a submodule of E, and hence the quotient ring
E/I may naturally be viewed as an R-module, with scalar multiplication defined
by c · [α]I := [cα]I for c ∈ R and α ∈ E. Example 13.4 is a special case of this,
applied to the extension ring R[X ] and the ideal (f ). 2

EXERCISE 13.1. Show that if N is a submodule of an R-module M , then a set
P ⊆ N is a submodule of M if and only if P is a submodule of N .

EXERCISE 13.2. Let M1 and M2 be R-modules, and let N1 be a submodule of
M1 and N2 a submodule of M2. Show that N1 ×N2 is a submodule of M1 ×M2.

EXERCISE 13.3. Show that if R is non-trivial, then the R-module R[X ] is not
finitely generated.
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13.3 Module homomorphisms and isomorphisms
Again, throughout this section, R is a ring. The notion of a group homomorphism
extends in the obvious way to R-modules.

Definition 13.4. Let M and M ′ be modules over R. An R-module homomor-
phism from M to M ′ is a function ρ : M →M ′, such that

(i) ρ is a group homomorphism from M to M ′, and

(ii) ρ(cα) = cρ(α) for all c ∈ R and α ∈M .

An R-module homomorphism is also called an R-linear map. We shall use
this terminology from now on. Expanding the definition, we see that a map
ρ : M → M ′ is an R-linear map if and only if ρ(α + β) = ρ(α) + ρ(β) and
ρ(cα) = cρ(α) for all α, β ∈M and all c ∈ R.

Example 13.16. If N is a submodule of an R-module M , then the inclusion map
i : N →M is obviously an R-linear map. 2

Example 13.17. Suppose N is a submodule of an R-module M . Then the natural
map (see Example 6.36)

ρ : M →M/N

α 7→ [α]N

is not just a group homomorphism, it is also easily seen to be an R-linear map. 2

Example 13.18. Let M be an R-module, and let k be an integer. Then the k-
multiplication map on M (see Example 6.38) is not only a group homomorphism,
but it is also easily seen to be an R-linear map. Its image is the submodule kM ,
and its kernel the submodule M{k}. 2

Example 13.19. Let M be an R-module, and let c be an element of R. The map

ρ : M →M

α 7→ cα

is called c-multiplication map on M , and is easily seen to be an R-linear map
whose image is the submodule cM , and whose kernel is the submodule M{c}.
The set of all c ∈ R for which cM = {0M} is called the R-exponent of M , and is
easily seen to be an ideal of R. 2

Example 13.20. Let M be an R-module, and let α be an element of M . The map

ρ : R →M

c 7→ cα
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is easily seen to be an R-linear map whose image is the submodule Rα (i.e., the
submodule generated by α). The kernel of this map is called the R-order of α, and
is easily seen to be an ideal of R. 2

Example 13.21. Generalizing the previous example, let M be an R-module, and
let α1, . . . , αk be elements of M . The map

ρ : R×k →M

(c1, . . . , ck) 7→ c1α1 + · · · + ckαk
is easily seen to be anR-linear map whose image is the submoduleRα1+· · ·+Rαk
(i.e., the submodule generated by α1, . . . , αk). 2

Example 13.22. Suppose that M1, . . . ,Mk are submodules of an R-module M .
Then the map

ρ : M1 × · · · ×Mk →M

(α1, . . . , αk) 7→ α1 + · · · + αk
is easily seen to be anR-linear map whose image is the submoduleM1+· · ·+Mk. 2

Example 13.23. Let E be an extension ring of R. As we saw in Example 13.5,
E may be viewed as an R-module in a natural way. Let α ∈ E, and consider the
α-multiplication map on E, which sends β ∈ E to αβ ∈ E. Then it is easy to see
that this is an R-linear map. 2

Example 13.24. Let E and E ′ be extension rings of R, which may be viewed as
R-modules as in Example 13.5. Suppose that ρ : E → E ′ is a ring homomorphism
whose restriction toR is the identity map (i.e., ρ(c) = c for all c ∈ R). Then ρ is an
R-linear map. Indeed, for every c ∈ R and α, β ∈ E, we have ρ(α+β) = ρ(α)+ρ(β)
and ρ(cα) = ρ(c)ρ(α) = cρ(α). 2

Example 13.25. Let G and G′ be abelian groups. As we saw in Example 13.6,
G and G′ may be viewed as Z-modules. In addition, every group homomorphism
ρ : G → G′ is also a Z-linear map. 2

Since anR-module homomorphism is also a group homomorphism on the under-
lying additive groups, all of the statements in Theorem 6.19 apply. In particular, an
R-linear map is injective if and only if the kernel is trivial (i.e., contains only the
zero element). However, in the case of R-module homomorphisms, we can extend
Theorem 6.19, as follows:

Theorem 13.5. Let ρ : M →M ′ be an R-linear map. Then:

(i) for every submodule N of M , ρ(N) is a submodule of M ′; in particular
(setting N :=M), Im ρ is a submodule of M ′;
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(ii) for every submodule N ′ of M ′, ρ−1(N ′) is a submodule of M ′; in partic-
ular (setting N ′ := {0M ′}), Ker ρ is a submodule of M .

Proof. Exercise. 2

Theorems 6.20 and 6.21 have natural R-module analogs, which the reader may
easily verify:

Theorem 13.6. If ρ : M →M ′ and ρ′ : M ′ →M ′′ are R-linear maps, then so is
their composition ρ′ ◦ ρ : M →M ′′.

Theorem 13.7. Let ρi : M → M ′
i , for i = 1, . . . , k, be R-linear maps. Then the

map

ρ : M →M ′
1 × · · · ×M

′
k

α 7→ (ρ1(α), . . . , ρk(α))

is an R-linear map.

If an R-linear map ρ : M → M ′ is bijective, then it is called an R-module
isomorphism of M with M ′. If such an R-module isomorphism ρ exists, we say
that M is isomorphic to M ′, and write M ∼=M ′. Moreover, if M =M ′, then ρ is
called an R-module automorphism on M .

Theorems 6.22–6.26 also have natural R-module analogs, which the reader may
easily verify:

Theorem 13.8. If ρ is an R-module isomorphism of M with M ′, then the inverse
function ρ−1 is an R-module isomorphism of M ′ with M .

Theorem 13.9 (First isomorphism theorem). Let ρ : M → M ′ be an R-linear
map with kernel K and image N ′. Then we have an R-module isomorphism

M/K ∼= N ′.

Specifically, the map

ρ : M/K →M ′

[α]K 7→ ρ(α)

is an injective R-linear map whose image is N ′.

Theorem 13.10. Let ρ : M →M ′ be an R-linear map. Then for every submodule
N of M with N ⊆ Ker ρ, we may define an R-linear map

ρ : M/N →M ′

[α]N 7→ ρ(α).

Moreover, Im ρ = Im ρ, and ρ is injective if and only if N = Ker ρ.
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Theorem 13.11 (Internal direct product). Let M be an R-module with submod-
ules N1,N2, where N1 ∩N2 = {0M}. Then we have an R-module isomorphism

N1 ×N2
∼= N1 +N2

given by the map

ρ : N1 ×N2 → N1 +N2

(α1, α2) 7→ α1 + α2.

Theorem 13.12. Let M and M ′ be R-modules, and consider the R-module of
functions Map(M ,M ′) (see Example 13.10). Then

HomR(M ,M ′) := {σ ∈ Map(M ,M ′) : σ is an R-linear map}

is a submodule of Map(M ,M ′).

Example 13.26. Consider again the R-module R[X ]/(f ) discussed in Exam-
ple 13.4, where f ∈ R[X ] is of degree ` ≥ 0 and lc(f ) ∈ R∗. As an R-module,
R[X ]/(f ) is isomorphic to R[X ]<` (see Example 13.11). Indeed, based on the
observations in Example 7.39, the map ρ : R[X ]<` → R[X ]/(f ) that sends a
polynomial g ∈ R[X ] of degree less than ` to [g]f ∈ R[X ]/(f ) is an isomorphism
of R[X ]<` with R[X ]/(f ). Furthermore, R[X ]<` is isomorphic as an R-module to
R×`. Indeed, the map ρ′ : R[X ]<` → R×` that sends g =

∑`−1
i=0 aiX

i ∈ R[X ]<` to
(a0, . . . , a`−1) ∈ R×` is an isomorphism of R[X ]<` with R×`. 2

EXERCISE 13.4. Verify that the “is isomorphic to” relation on R-modules is an
equivalence relation; that is, for all R-modules M1,M2,M3, we have:

(a) M1
∼=M1;

(b) M1
∼=M2 implies M2

∼=M1;

(c) M1
∼=M2 and M2

∼=M3 implies M1
∼=M3.

EXERCISE 13.5. Let ρi : Mi → M ′
i , for i = 1, . . . , k, be R-linear maps. Show

that the map

ρ : M1 × · · · ×Mk →M ′
1 × · · · ×M

′
k

(α1, . . . , αk) 7→ (ρ1(α1), . . . , ρk(αk))

is an R-linear map.

EXERCISE 13.6. Let ρ : M → M ′ be an R-linear map, and let c ∈ R. Show that
ρ(cM) = cρ(M).

EXERCISE 13.7. Let ρ : M →M ′ be an R-linear map. Let N be a submodule of
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M , and let τ : N → M ′ be the restriction of ρ to N . Show that τ is an R-linear
map and that Ker τ = Ker ρ ∩N .

EXERCISE 13.8. Suppose M1, . . . ,Mk are R-modules. Show that for each i =
1, . . . , k, the projection map πi : M1 × · · · ×Mk → Mi that sends (α1, . . . , αk) to
αi is a surjective R-linear map.

EXERCISE 13.9. Show that if M = M1 ×M2 for R-modules M1 and M2, and
N1 is a subgroup of M1 and N2 is a subgroup of M2, then we have an R-module
isomorphism M/(N1 ×N2) ∼=M1/N1 ×M2/N2.

EXERCISE 13.10. Let M be an R-module with submodules N1 and N2. Show
that we have an R-module isomorphism (N1 +N2)/N2

∼= N1/(N1 ∩N2).

EXERCISE 13.11. LetM be anR-module with submodulesN1,N2, andA, where
N2 ⊆ N1. Show that (N1 ∩A)/(N2 ∩A) is isomorphic to a submodule of N1/N2.

EXERCISE 13.12. Let ρ : M →M ′ be an R-linear map with kernel K. Let N be
a submodule of M . Show that we have an R-module isomorphism M/(N +K) ∼=
ρ(M)/ρ(N).

EXERCISE 13.13. Let ρ : M →M ′ be a surjective R-linear map. Let S be the set
of all submodules of M that contain Ker ρ, and let S ′ be the set of all submodules
of M ′. Show that the sets S and S ′ are in one-to-one correspondence, via the map
that sends N ∈ S to ρ(N) ∈ S ′.

13.4 Linear independence and bases
Throughout this section, R denotes a ring.

Definition 13.13. Let M be an R-module, and let {αi}ni=1 be a family of elements
of M . We say that {αi}ni=1

(i) is linearly dependent (over R) if there exist c1, . . . , cn ∈ R, not all zero,
such that c1α1 + · · · + cnαn = 0M ;

(ii) is linearly independent (over R) if it is not linearly dependent;

(iii) spans M (over R) if for every α ∈M , there exist c1, . . . , cn ∈ R such that
c1α1 + · · · + cnαn = α;

(iv) is a basis for M (over R) if it is linearly independent and spans M .

The family {αi}ni=1 always spans some submodule ofM , namely, the submodule
N generated by α1, . . . , αn. In this case, we may also call N the submodule (over
R) spanned by {αi}ni=1.

The family {αi}ni=1 may contain duplicates, in which case it is linearly dependent
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(unless R is trivial). Indeed, if, say, α1 = α2, then setting c1 := 1, c2 := −1, and
c3 := · · · := cn := 0, we have the linear relation

∑n
i=1 ciαi = 0M .

If the family {αi}ni=1 contains 0M , then it is also linear dependent (unless R is
trivial). Indeed, if, say, α1 = 0M , then setting c1 := 1 and c2 := · · · := cn := 0, we
have the linear relation

∑n
i=1 ciαi = 0M .

The family {αi}ni=1 may also be empty (i.e., n = 0), in which case it is linearly
independent, and spans the submodule {0M}.

In the above definition, the ordering of the elements α1, . . . , αn makes no differ-
ence. As such, when convenient, we may apply the terminology in the definition
to any family {αi}i∈I , where I is an arbitrary, finite index set.

Example 13.27. Consider the R-module R×n. Define α1, . . . , αn ∈ R×n as follows:

α1 := (1, 0, . . . , 0), α2 := (0, 1, 0, . . . , 0), . . . , αn := (0, . . . , 0, 1);

that is, αi has a 1 in position i and is zero everywhere else. It is easy to see that
{αi}ni=1 is a basis for R×n. Indeed, for all c1, . . . , cn ∈ R, we have

c1α1 + · · · + cnαn = (c1, . . . , cn),

from which it is clear that {αi}ni=1 spans R×n and is linearly independent. The
family {αi}ni=1 is called the standard basis for R×n. 2

Example 13.28. Consider the Z-module Z×3. In addition to the standard basis,
which consists of the tuples

(1, 0, 0), (0, 1, 0), (0, 0, 1),

the tuples

α1 := (1, 1, 1), α2 := (0, 1, 0), α3 := (2, 0, 1)

also form a basis. To see this, first observe that for all c1, c2, c3, d1, d2, d3 ∈ Z, we
have

(d1, d2, d3) = c1α1 + c2α2 + c3α3

if and only if

d1 = c1 + 2c3, d2 = c1 + c2, and d3 = c1 + c3. (13.1)

If (13.1) holds with d1 = d2 = d3 = 0, then subtracting the equation c1 + c3 = 0
from c1+2c3 = 0, we see that c3 = 0, from which it easily follows that c1 = c2 = 0.
This shows that the family {αi}3

i=1 is linearly independent. To show that it spans
Z×3, the reader may verify that for any given d1, d2, d3 ∈ Z, the values

c1 := −d1 + 2d3, c2 := d1 + d2 − 2d3, c3 := d1 − d3
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satisfy (13.1).
The family of tuples (1, 1, 1), (0, 1, 0), (1, 0, 1) is not a basis, as it is linearly

dependent: the third tuple is equal to the first minus the second.
The family of tuples (1, 0, 12), (0, 1, 30), (0, 0, 18) is linearly independent, but

does not span Z×3: the last component of any Z-linear combination of these tuples
must be divisible by gcd(12, 30, 18) = 6. However, this family of tuples is a basis
for the Q-module Q×3. 2

Example 13.29. Consider again the submodule R[X ]<` of R[X ], where ` ≥ 0,
consisting of all polynomials of degree less than ` (see Example 13.11). Then
{X i−1}`i=1 is a basis for R[X ]<` over R. 2

Example 13.30. Consider again the ring E = R[X ]/(f ), where f ∈ R[X ] with
deg(f ) = ` ≥ 0 and lc(f ) ∈ R∗. As in Example 13.4, we may naturally view E as
a module over R. From the observations in Example 7.39, it is clear that {ξi−1}`i=1
is a basis for E over R, where ξ := [X ]f ∈ E. 2

The next theorem highlights a critical property of bases:

Theorem 13.14. If {αi}ni=1 is a basis for an R-module M , then the map

ε : R×n →M

(c1, . . . , cn) 7→ c1α1 + · · · + cnαn
is an R-module isomorphism. In particular, every element of M can be expressed
in a unique way as c1α1 + · · · + cnαn, for c1, . . . , cn ∈ R.

Proof. We already saw that ε is an R-linear map in Example 13.21. Since {αi}ni=1
is linearly independent, it follows that the kernel of ε is trivial, so that ε is injective.
That ε is surjective follows immediately from the fact that {αi}ni=1 spans M . 2

The following is an immediate corollary of this theorem:

Theorem 13.15. Any two R-modules with bases of the same size are isomorphic.

The following theorem develops an important connection between bases and
linear maps.

Theorem 13.16. Let {αi}ni=1 be a basis for an R-module M , and let ρ : M →M ′

be an R-linear map. Then:

(i) ρ is surjective if and only if {ρ(αi)}ni=1 spans M ′;

(ii) ρ is injective if and only if {ρ(αi)}ni=1 is linearly independent;

(iii) ρ is an isomorphism if and only if {ρ(αi)}ni=1 is a basis for M ′.
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Proof. By the previous theorem, we know that every element of M can be written
uniquely as

∑

i ciαi, where the ci’s are in R. Therefore, every element in Im ρ

can be expressed as ρ(
∑

i ciαi) =
∑

i ciρ(αi). It follows that Im ρ is equal to the
subspace of M ′ spanned by {ρ(αi)}ni=1. From this, (i) is clear.

For (ii), consider a non-zero element
∑

i ciαi of M , so that not all ci’s are zero.
Now,

∑

i ciαi ∈ Ker ρ if and only if
∑

i ciρ(αi) = 0M ′ , and thus, Ker ρ is non-trivial
if and only if {ρ(αi)}ni=1 is linearly dependent. That proves (ii).

(iii) follows from (i) and (ii). 2

EXERCISE 13.14. Let M be an R-module. Suppose {αi}ni=1 is a linearly inde-
pendent family of elements of M . Show that for every J ⊆ {1, . . . , n}, the sub-
family {αj}j∈J is also linearly independent.

EXERCISE 13.15. Suppose ρ : M →M ′ is an R-linear map. Show that if {αi}ni=1
is a linearly dependent family of elements of M , then {ρ(αi)}ni=1 is also linearly
dependent.

EXERCISE 13.16. Suppose ρ : M → M ′ is an injective R-linear map and that
{αi}ni=1 is a linearly independent family of elements of M . Show that {ρ(αi)}ni=1 is
linearly independent.

EXERCISE 13.17. Suppose that {αi}ni=1 spans an R-module M and that ρ : M →
M ′ is an R-linear map. Show that:

(a) ρ is surjective if and only if {ρ(αi)}ni=1 spans M ′;

(b) if {ρ(αi)}ni=1 is linearly independent, then ρ is injective.

13.5 Vector spaces and dimension
Throughout this section, F denotes a field.

A module over a field is also called a vector space. In particular, an F -module
is called an F -vector space, or a vector space over F .

For vector spaces over F , one typically uses the terms subspace and quotient
space, instead of (respectively) submodule and quotient module; likewise, one
usually uses the terms F -vector space homomorphism, isomorphism and auto-
morphism, as appropriate.

We now develop the basic theory of dimension for finitely generated vector
spaces. Recall that a vector space V over F is finitely generated if we have
V = 〈α1, . . . , αn〉F for some α1, . . . , αn of V . The main results here are that

• every finitely generated vector space has a basis, and

• all such bases have the same number of elements.
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Throughout the rest of this section, V denotes a vector space over F . We begin
with a technical fact that will be used several times throughout this section:

Theorem 13.17. Suppose that {αi}ni=1 is a linearly independent family of elements
that spans a subspace W ( V , and that αn+1 ∈ V \ W . Then {αi}n+1

i=1 is also
linearly independent.

Proof. Suppose we have a linear relation

0V = c1α1 + · · · + cnαn + cn+1αn+1,

where the ci’s are in F . We want to show that all the ci’s are zero. If cn+1 6= 0, then
we have

αn+1 = −c−1
n+1(c1α1 + · · · + cnαn) ∈ W ,

contradicting the assumption that αn+1 /∈ W . Therefore, we must have cn+1 = 0,
and the linear independence of {αi}ni=1 implies that c1 = · · · = cn = 0. 2

The next theorem says that every finitely generated vector space has a basis, and
in fact, any family that spans a vector space contains a subfamily that is a basis for
the vector space.

Theorem 13.18. Suppose {αi}ni=1 is a family of elements that spans V . Then for
some subset J ⊆ {1, . . . , n}, the subfamily {αj}j∈J is a basis for V .

Proof. We prove this by induction on n. If n = 0, the theorem is clear, so assume
n > 0. Consider the subspace W of V spanned by {αi}n−1

i=1 . By the induction
hypothesis, for some K ⊆ {1, . . . , n − 1}, the subfamily {αk}k∈K is a basis for W .
There are two cases to consider.

Case 1: αn ∈ W . In this case, W = V , and the theorem clearly holds with
J := K.

Case 2: αn /∈ W . We claim that setting J := K ∪ {n}, the subfamily {αj}j∈J
is a basis for V . Indeed, since {αk}k∈K is linearly independent, and αn /∈ W ,
Theorem 13.17 immediately implies that {αj}j∈J is linearly independent. Also,
since {αk}k∈K spans W , it is clear that {αj}j∈J spans W + 〈αn〉F = V . 2

Theorem 13.19. If V is spanned by some family of n elements of V , then every
family of n + 1 elements of V is linearly dependent.

Proof. We prove this by induction on n. If n = 0, the theorem is clear, so assume
that n > 0. Let {αi}ni=1 be a family that spans V , and let {βi}n+1

i=1 be an arbitrary
family of elements of V . We wish to show that {βi}n+1

i=1 is linearly dependent.
We know that βn+1 is a linear combination of the αi’s, say,

βn+1 = c1α1 + · · · + cnαn. (13.2)
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If all the ci’s were zero, then we would have βn+1 = 0V , and so trivially, {βi}n+1
i=1 is

linearly dependent. So assume that some ci is non-zero, and for concreteness, say
cn 6= 0. Dividing equation (13.2) through by cn, it follows that αn is an F -linear
combination of α1, . . . , αn−1, βn+1. Therefore,

〈α1, . . . , αn−1, βn+1〉F ⊇ 〈α1, . . . , αn−1〉F + 〈αn〉F = V .

Now consider the subspace W := 〈βn+1〉F and the quotient space V/W . Since
the family of elements α1, . . . , αn−1, βn+1 spans V , it is easy to see that {[αi]W }n−1

i=1
spans V/W ; therefore, by induction, {[βi]W }ni=1 is linearly dependent. This means
that there exist d1, . . . , dn ∈F , not all zero, such that d1β1+· · ·+dnβn ≡ 0 (mod W ),
which means that for some dn+1 ∈ F , we have d1β1 + · · ·+ dnβn = dn+1βn+1. That
proves that {βi}n+1

i=1 is linearly dependent. 2

An important corollary of Theorem 13.19 is the following:

Theorem 13.20. If V is finitely generated, then any two bases for V have the same
size.

Proof. If one basis had more elements than another, then Theorem 13.19 would
imply that the first basis was linearly dependent, which contradicts the definition
of a basis. 2

Theorem 13.20 allows us to make the following definition:

Definition 13.21. If V is finitely generated, the common size of any basis is called
the dimension of V , and is denoted dimF (V ).

Note that from the definitions, we have dimF (V ) = 0 if and only if V is the
trivial vector space (i.e., V = {0V }). We also note that one often refers to a
finitely generated vector space as a finite dimensional vector space. We shall give
preference to this terminology from now on.

To summarize the main results in this section up to this point: if V is finite
dimensional, it has a basis, and any two bases have the same size, which is called
the dimension of V .

Theorem 13.22. Suppose that dimF (V ) = n, and that {αi}ni=1 is a family of n
elements of V . The following are equivalent:

(i) {αi}ni=1 is linearly independent;

(ii) {αi}ni=1 spans V ;

(iii) {αi}ni=1 is a basis for V .

Proof. Let W be the subspace of V spanned by {αi}ni=1.
First, let us show that (i) implies (ii). Suppose {αi}ni=1 is linearly independent.
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Also, by way of contradiction, suppose that W ( V , and choose αn+1 ∈ V \W .
Then Theorem 13.17 implies that {αi}n+1

i=1 is linearly independent. But then we
have a linearly independent family of n + 1 elements of V , which is impossible by
Theorem 13.19.

Second, let us prove that (ii) implies (i). Let us assume that {αi}ni=1 is linearly
dependent, and prove that W ( V . By Theorem 13.18, we can find a basis for
W among the αi’s, and since {αi}ni=1 is linearly dependent, this basis must con-
tain strictly fewer than n elements. Hence, dimF (W ) < dimF (V ), and therefore,
W ( V .

The theorem now follows from the above arguments, and the fact that, by defi-
nition, (iii) holds if and only if both (i) and (ii) hold. 2

We next examine the dimension of subspaces of finite dimensional vector spaces.

Theorem 13.23. Suppose that V is finite dimensional and W is a subspace of
V . Then W is also finite dimensional, with dimF (W ) ≤ dimF (V ). Moreover,
dimF (W ) = dimF (V ) if and only if W = V .

Proof. Suppose dimF (V ) = n. Consider the set S of all linearly independent
families of the form {αi}mi=1, where m ≥ 0 and each αi is in W . The set S is
certainly non-empty, as it contains the empty family. Moreover, by Theorem 13.19,
every member of S must have at most n elements. Therefore, we may choose some
particular element {αi}mi=1 of S, where m is as large as possible. We claim that this
family {αi}mi=1 is a basis for W . By definition, {αi}mi=1 is linearly independent
and spans some subspace W ′ of W . If W ′ ( W , we can choose an element
αm+1 ∈ W \W ′, and by Theorem 13.17, the family {αi}m+1

i=1 is linearly independent,
and therefore, this family also belongs to S, contradicting the assumption that m is
as large as possible.

That proves that W is finite dimensional with dimF (W ) ≤ dimF (V ). It remains
to show that these dimensions are equal if and only if W = V . Now, if W = V ,
then clearly dimF (W ) = dimF (V ). Conversely, if dimF (W ) = dimF (V ), then by
Theorem 13.22, any basis for W must already span V . 2

Theorem 13.24. If V is finite dimensional, and W is a subspace of V , then the
quotient space V/W is also finite dimensional, and

dimF (V/W ) = dimF (V ) − dimF (W ).

Proof. Suppose that {αi}ni=1 spans V . Then it is clear that {[αi]W }ni=1 spans V/W .
By Theorem 13.18, we know that V/W has a basis of the form {[αi]W }`i=1, where
` ≤ n (renumbering the αi’s as necessary). By Theorem 13.23, we know that W
has a basis, say {βj}mj=1. The theorem will follow immediately from the following:
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Claim. The elements

α1, . . . , α`, β1, . . . , βm (13.3)

form a basis for V .
To see that this family spans V , consider any element γ of V . Then since

{[αi]W }`i=1 spans V/W , we have γ ≡
∑

i ciαi (mod W ) for some c1, . . . , c` ∈ F . If
we set β := γ−

∑

i ciαi ∈ W , then since {βj}mj=1 spansW , we have β =
∑

j djβj for
some d1, . . . , dm ∈ F , and hence γ =

∑

i ciαi+
∑

j djβj. That proves that the family
of elements (13.3) spans V . To prove this family is linearly independent, suppose
we have a relation of the form

∑

i ciαi +
∑

j djβj = 0V , where c1, . . . , c` ∈ F

and d1, . . . , dm ∈ F . If any of the ci’s were non-zero, this would contradict the
assumption that {[αi]W }`i=1 is linearly independent. So assume that all the ci’s are
zero. If any of the dj’s were non-zero, this would contradict the assumption that
{βj}mj=1 is linearly independent. Thus, all the ci’s and dj’s must be zero, which
proves that the family of elements (13.3) is linearly independent. That proves the
claim. 2

Theorem 13.25. If V is finite dimensional, then every linearly independent family
of elements of V can be extended to form a basis for V .

Proof. One can prove this by generalizing the proof of Theorem 13.18. Alterna-
tively, we can adapt the proof of the previous theorem. Let {βj}mj=1 be a linearly
independent family of elements that spans a subspace W of V . As in the proof of
the previous theorem, if {[αi]W }`i=1 is a basis for the quotient space V/W , then the
elements

α1, . . . , α`, β1, . . . , βm

form a basis for V . 2

Example 13.31. Suppose that F is finite, say |F | = q, and that V is finite dimen-
sional, say dimF (V ) = n. Then clearly |V | = qn. If W is a subspace with
dimF (W ) = m, then |W | = qm, and by Theorem 13.24, dimF (V/W ) = n−m, and
hence |V/W | = qn−m. Just viewing V and W as additive groups, we know that the
index of W in V is [V : W ] = |V/W | = |V |/|W | = qn−m, which agrees with the
above calculations. 2

We next consider the relation between the notion of dimension and linear maps.
First, observe that by Theorem 13.15, if two finite dimensional vector spaces have
the same dimension, then they are isomorphic. The following theorem is the con-
verse:

Theorem 13.26. If V is of finite dimension n, and V is isomorphic to V ′, then V ′

is also of finite dimension n.
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Proof. If {αi}ni=1 is a basis for V , then by Theorem 13.16, {ρ(αi)}ni=1 is a basis for
V ′. 2

Thus, two finite dimensional vector spaces are isomorphic if and only if they
have the same dimension.

We next illustrate one way in which the notion of dimension is particularly use-
ful. In general, if we have a function f : A → B, injectivity does not imply
surjectivity, nor does surjectivity imply injectivity. If A and B are finite sets of
equal size, then these implications do indeed hold. The following theorem gives us
another important setting where these implications hold, with finite dimensionality
playing the role corresponding to finite cardinality:

Theorem 13.27. If ρ : V → V ′ is an F -linear map, and if V and V ′ are finite
dimensional with dimF (V ) = dimF (V ′), then we have:

ρ is injective if and only if ρ is surjective.

Proof. Let {αi}ni=1 be a basis for V . Then

ρ is injective ⇐⇒ {ρ(αi)}ni=1 is linearly independent (by Theorem 13.16)

⇐⇒ {ρ(αi)}ni=1 spans V ′ (by Theorem 13.22)

⇐⇒ ρ is surjective (again by Theorem 13.16). 2

This theorem may be generalized as follows:

Theorem 13.28. If V is finite dimensional, and ρ : V → V ′ is an F -linear map,
then Im ρ is a finite dimensional vector space, and

dimF (V ) = dimF (Im ρ) + dimF (Ker ρ).

Proof. As the reader may verify, this follows immediately from Theorem 13.24,
together with Theorems 13.26 and 13.9. 2

Intuitively, one way to think of Theorem 13.28 is as a “law of conservation” for
dimension: any “dimensionality” going into ρ that is not “lost” to the kernel of ρ
must show up in the image of ρ.

EXERCISE 13.18. Show that if V1, . . . ,Vn are finite dimensional vector spaces
over F , then V1 × · · · × Vn has dimension

∑n
i=1 dimF (Vi).

EXERCISE 13.19. Show that if V is a finite dimensional vector space over F with
subspaces W1 and W2, then

dimF (W1 +W2) = dimF (W1) + dimF (W2) − dimF (W1 ∩W2).
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EXERCISE 13.20. From the previous exercise, one might be tempted to think that
a more general “inclusion/exclusion principle” for dimension holds. Determine if
the following statement is true or false: if V is a finite dimensional vector space
over F with subspaces W1, W2, and W3, then

dimF (W1 +W2 +W3) = dimF (W1) + dimF (W2) + dimF (W3)

− dimF (W1 ∩W2) − dimF (W1 ∩W3) − dimF (W2 ∩W3)

+ dimF (W1 ∩W2 ∩W3).

EXERCISE 13.21. Suppose that V and W are vector spaces over F , V is finite
dimensional, and {αi}ki=1 is a linearly independent family of elements of V . In
addition, let β1, . . . , βk be arbitrary elements of W . Show that there exists an F -
linear map ρ : V → W such that ρ(αi) = βi for i = 1, . . . , k.

EXERCISE 13.22. Let V be a vector space over F with basis {αi}ni=1. Let S be a
finite, non-empty subset of F , and define

B :=
{

n
∑

i=1

ciαi : c1, . . . , cn ∈ S
}

.

Show that if W is a subspace of V , with W ( V , then |B ∩W | ≤ |S|n−1.

EXERCISE 13.23. The theory of dimension for finitely generated vector spaces is
quite elegant and powerful. There is a theory of dimension (of sorts) for modules
over an arbitrary, non-trivial ring R, but it is much more awkward and limited.
This exercise develops a proof of one aspect of this theory: if an R-module M has
a basis at all, then any two bases have the same size. To prove this, we need the fact
that any non-trivial ring has a maximal ideal (this was proved in Exercise 7.40 for
countable rings). Let n,m be positive integers, let α1, . . . , αm be elements of R×n,
and let I be an ideal of R.

(a) Show that if {αi}mi=1 spansR×n, then every element of I×n can be expressed
as c1α1 + · · · + cmαm, where c1, . . . , cm belong to I .

(b) Show that ifm > n and I is a maximal ideal, then there exist c1, . . . , cm ∈ R,
not all in I , such that c1α1 + · · · + cmαm ∈ I×n.

(c) From (a) and (b), deduce that if m > n, then {αi}mi=1 cannot be a basis for
R×n.

(d) From (c), conclude that any two bases for a given R-module M must have
the same size.


